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Abstract The mode of failure and failure probability of a

brittle coating on a compliant substrate subjected to a static

load through a spherical indenter is investigated experi-

mentally and theoretically. We extend our recent study

(2003, J Mat Sci 38:1589) of surface crack initiation in a

monolithic solid to the layered system, and account for the

multi axial stress state of the indentation in the failure

probability analysis. Two modes of failure, a Hertzian cone

crack initiating from the contacting surface and a half-

penny-shaped crack initiating from the interface, are

investigated and the probability of failure initiation for both

surfaces are theoretically predicted and compared with

experimental data.The effect of interface debonding on

failure phenomena is investigated. For a given load the

failure probability for debonded specimens is significantly

higher than that of well-bonded samples. For the debonded

case the theoretical failure probability curve falls within the

90% confidence interval of the experimental data, while the

experimental values for the completely bonded case show

somewhat lower failure probabilities than that predicted.

This may be attributed to the possible bridging effect by the

adhesive on interfacial surface defects in the ceramic that is

not accounted for in our model.

Introduction

Layered structures, such as a hard ceramic layer bonded onto

a soft substrate, are often used in industrial and military

applications to protect substrates from environmental effects

(mechanical, thermal, and chemical). The same strategy has

been applied to medical implants and various dental resto-

rations such as complete and partial veneering of teeth with

ceramics to protect the remaining tooth structure. A more

complete understanding of the failure mechanisms of such

layered structures is therefore important for damage-tolerant

design and further structural improvement.

Indentation testing is the method of choice for charac-

terizing the strength of coated structures and a number of

studies [1–4] have been conducted by loading them stati-

cally through a spherical indenter. Chai et al. [2] addressed

the effect of the interface flaws on fracture of a brittle

coating using glass disks bonded to a polycarbonate sub-

strate. In such a system two modes of failure may occur:

one initiated from the sample surface, similar to the

semispace [5], the other initiated from the bonded inter-

face. They found that when flaws at the interface are

removed with etching, cone cracks from the top surface

were more likely to occur than half-penny-shaped cracks at

the interface. Miranda et al. [3] have further developed a

flaw based statistical analysis to account for systematic

differences between experimentally observed and theoret-

ically predicted critical loads for the initiation of contact-

induced interfacial radial cracks. Tsai et al. [4] addressed

the effect of glass-ceramic layer thickness on the surface

Hertzian cone crack initiation by a flat indenter loading as

well as on crack initiation from the interface. Despite these

recent studies, the issue of probability of failure initiation

from the contact surface versus the coating/substrate

interface has not been fully understood.
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In this work, we predict the crack initiation probability

for both the contact surface (cone crack) and the interface

(half-penny-shaped radial crack). We address this issue

both experimentally and theoretically by considering a

simple layered structure (Fig. 1) subjected to a static

indentation load with different indenter radii. A cone crack

is found to initiate from the contact surface for the smaller

indenter, while for the larger indenter a half-penny-shaped

crack is found to initiate from the interface (bottom surface

of the top ceramic layer). We develop a mathematical

model to analyze these two distinct modes of crack initi-

ation and the statistical variation of the critical load. We

generalize our recent study of surface crack initiation in

monolithic solids [5] to the layered structure case and

account for the multi-axial stress state of the indentation

contact surface in the statistical analysis of failure initia-

tion. We first assume, as Frank and Lawn [6] and Mouginot

and Maugis [7] did for a monolithic case, an axi-symmetric

cone crack path of r3 trajectory initiating from the top

contact surface. The stress intensity factor is then evaluated

along the proposed crack path taking into consideration the

rapidly changing stress field associated with this contact

problem. The variation in crack initiation load is attributed

to the flaw size distribution on the specimen surface which

is characterized by a fracture-mechanics-based statistical

model applicable for a multiaxial stress state. By combin-

ing the crack initiation criterion with the flaw size distri-

bution, we predict the probability of cone crack initiation at

the top contact surface as a function of load. Statistical

parameters related to the flaw distribution were experi-

mentally measured with ball-on-ring flexure tests and

the failure initiation probability was evaluated by

incorporating the multi-axial stress state of the contact

surface. The elastic moduli were measured by ultrasonic

methods. These experimentally determined material prop-

erties were used in obtaining the theoretical failure prob-

ability distributions.

Since the interfacial region is not in the immediate

neighborhood of the contact load, the stress gradient in this

region is relatively small and we apply the above-described

fracture-mechanics-based statistical multiaxial stress model

directly to predict the crack initiation probability at the

interface. By comparing the probabilities of the competing

mechanisms of crack initiation at the top contact surface

and at the interface, we explain the experimentally observed

transition of the crack initiation site (contact surface versus

interface). We also investigate the effect of the debonding

between the coating and the substrate on the critical crack

initiation load from the interface by employing indentation

tests on a fully debonded model. Theoretical predictions

were compared with experimental results.

Experimental approach

Materials and sample preparation

Solid borosilicate glass rods (item # 8496K82, McMaster

Carr Supplies), 15.9 mm in diameter, were sectioned with a

slow speed diamond wheel saw (Leco VC-50, St Joseph,

MI) under water coolant into 1 mm thick disks. A total of

about 130 disks were fabricated. The surfaces of the glass

disks were sanded on a rotating wheel with 600 grit SiC

sandpaper under water coolant. The disks were placed in

distilled water and cleaned ultrasonically for 5 min prior to

examination. The surfaces were examined under a binoc-

ular microscope at 15–20· magnification to assure a uni-

form finish. Any specimen surfaces that showed visible

residual saw cuts were marked and re-sanded until a uni-

form surface finish was observed. The glass disks were

randomly divided into three groups.

The ball-on ring biaxial flexure test (Fig. 2) was used to

determine the strength of two of the glass disk groups.r

load P

top crack

interface crack

R

z

a

c

r0

c

top

substrate

glue

Fig. 1 Illustration of the two modes of failure: (1) cone crack

initiated from the contact surface and (2) vertical half-penny shaped

crack initiated from the interface

load P

thickness t

2Rd

Fig. 2 Schematic of biaxial flexure test

5442 J Mater Sci (2006) 41:5441–5454

123



Approximately one quarter of the disks (n = 35) were

tested as finished and another quarter of the disks (n = 35)

were further etched for two minutes with 10% HF acid. The

strength data obtained from the biaxial testing were used to

determine the surface flaw density distribution of the two

different surface conditions.

One surface of each of the remaining disks (third group,

n = 60) was etched as described above with HF acid. Half of

these disks (n = 30) were bonded to the composite substrates

to make the layered specimens, and the other half (n = 30)

were simply laid on the composite substrate (nonbonded) to

investigate the effect of interfacial debonding.

The composite substrate consisted of continuous-woven

glass-fiber-reinforced epoxy resin (Garolite G-10,

McMaster Carr Supply). Five millimeter thick parallel

sided disks were sectioned from a 15.9 mm diameter solid

rod using a standard metal lathe. Both sides of the disks

were sanded flat with 600 grit SiC paper prior to bonding.

The glass disks were bonded to the composite substrates

using standard dental adhesive technology. The bonded

surfaces of the glass and composite were treated with a

silane coupling agent (Silane Primer, SDS Kerr, Orange

CA) and air thinned to form a thin hydrophobic layer. The

dental adhesive (Optibond Solo Plus, SDS Kerr, Orange

CA) was applied to the silane treated surfaces, air thinned

and photopolymerized for 20 s. Finally the two surfaces

were cemented together with a dental composite resin ce-

ment (Nexus 2, SDS Kerr, Orange, CA) and photopoly-

merized for 60 s. Any excess resin was removed from the

side of the glass with a rubber polishing wheel so that crack

initiation observation was possible.

Half of the bonded specimens (15 samples) were verti-

cally loaded using a 1.59 mm spherical radius WC indenter

(through standard Hertzian contact), while the other half

were indented by a 20 mm spherical radius WC indenter.

The non-bonded or debonded specimens (n = 30) were

indented by a 20 mm radius spherical WC indenter.

Measurement of elastic properties

The elastic moduli of the borosilicate glass and the com-

posite materials were obtained by ultrasonic measure-

ments of longitudinal vl ¼
ffiffiffiffiffiffiffiffi

kþ2l
q

q

and shear vt ¼
ffiffi

l
q

q

wave velocities, where k is Lame’s parameter and l is the

shear modulus. Young’s modulus E is E = l(3k + 2l)/

(k + l). The density was determined by Archimedes’

method. The ultrasonic velocity measurements were per-

formed at 10 MHz by the pulse-echo method using both

immersion and contact techniques for longitudinal wave

velocity and by the contact method for shear wave velocity.

A Panametrics 5073 PR pulser/receiver and a Hewlett

Packard 54504-A 400 MHz digital oscilloscope were used

for time delay measurements by the signal overlapping

technique. The sample thickness was measured by a

micrometer. The precision of the measurement is limited

by the flatness and parallelness of the sample surfaces and

by the couplant effect for the shear wave velocity mea-

surement. We estimate at least three correct digits in the

determination of the Young’s and shear moduli on our

samples. The results are summarized in Table 1.

Measurement of failure probability distribution

of biaxial tests

In this work we have experimentally determined the Wei-

bull parameters of the flaw distribution from the failure

probability distribution of the biaxial flexural data [10]. The

1 mm thick glass disks were supported at the edge by a ring

of bearings and loaded on the top center through a tungsten

carbide (WC) ball indenter with radius of 4.76 mm (Fig. 2).

The experiments were carried out on the Universal Testing

Machine (Instron Model 4020, Canton, Mass.) at a cross-

head speed of 0.01 mm/min. Two groups of specimens

were used to obtain the failure probability distribution for

both the sanded surface and etched surface conditions.

Under this configuration, cracks are initiated from the

bottom surface which is subjected to biaxial tensile stress.

The fracture initiation loads, P, were recorded for each

specimen and the data sorted by the magnitude of the failure

load. The cumulative probability Fi of crack initiation at the

ith fracture load Pi was obtained as the median rank [11].

Measurement of crack initiation in layered structure

with different indenter sizes

The bonded layered specimens were loaded with WC

indenters having spherical radii of 1.59 and 20.0 mm, and the

fully debonded specimens loaded with a 20 mm radius WC

indenter. The specimens were vertically loaded on a uni-

versal testing machine at a crosshead speed of 0.01 mm/min.

A 20· binocular microscope (SMZ-1, Nikon, USA) was

used to observe the crack initiation. The specimens were

trans-illuminated from two different directions with fiber

optic lights. The microscope was set up to view the spec-

imen through the side of the polished transparent glass disk

Table 1 Material properties and geometry

Top layer Glue layer Substrate

Average thickness (mm) 1.15 0.10 5.00

Young’s modulus

E (MPa)

62.5 · 103 10.21 · 103 12.6 · 103

Poisson’s ratio m 0.19 0.33 0.35

Fracture toughness

KIC (MPa m1/2)a
0.875 – –

aWiederhorn et al. [8, 9]
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during the entire test period. The load at which crack ini-

tiation was observed was recorded as the initiation failure

load. The observed location of crack initiation, either at a

contact surface or at an interface, was also recorded. As

was done for the biaxial data, the crack initiation loads P

were sorted in order of magnitude and the cumulative

probability Fi of crack initiation at the ith fracture load Pi is

obtained as the median rank [11].

Theoretical analysis

Probability of crack initiation and growth from the top

contact surface

In this section we will develop a method for predicting the

probability distribution of crack initiation from the top

surface for the model layered structure shown in Fig. 1. The

dimensions of this layered structure and the material prop-

erties of the individual layers are summarized in Table 1.

Contact pressure distribution for the semispace versus

layered case

The stress field associated with elastic indentation tests on

monolithic materials is described by Hertz theory [12].

When friction between the two contact surfaces is ignored

the normal contact pressure distribution p0 is given as

follows:

p0 ¼ 1:5pm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� (r=a)2

q

(0 � r � a): ð1Þ

where a is the contact radius and pm is the average contact

pressure:

pm ¼
P

pa2
, ð2Þ

a3 ¼ 3PR
4E� ; ð3Þ

where E* is a reduced elastic modulus

1

E� ¼
1� m2

E
þ 1� m;2

E0
, ð4Þ

R is the radius of the spherical indenter; P is the load

applied on the indenter; E, m, and E¢, m¢ are the Young’s

modulus and Poisson’s ratio of the top glass layer and those

of the indenter, respectively.

The contact pressure distribution for a layered structure

subjected to an indentation load is affected by the structure

geometry. We have evaluated the distribution by the finite

element method using the ABAQUS finite element soft-

ware package with four-node axisymmetric elements. The

spherical indenter is assumed rigid and the special contact

elements were employed to numerically handle the contact

between the indenter and the top surface of the layered

structure.

If the indentation load is sufficiently small and the top

layer is sufficiently thick, the presence of the substrate will

not affect the contact pressure distribution and in this case,

the contact pressure distribution for the layered structure

approaches that of the monolithic semispace. To examine

whether it is possible to approximate the contact pressure

for the layered structure with that for the monolithic

material we have compared in Fig. 3 the finite element

results for the actual layered structure against the analytical

contact pressure distribution for the monolithic material

(Eq. 1). The data are for the material and geometrical

parameters listed in Table 1; indenter radius is 20.0 mm

and load is 500 N. The later is selected since, for the

20 mm radius indenter, the experimentally observed aver-

age failure load is around 500 N. In general, the difference

between these two curves is not very large. The maximum

contact pressure for the layered structure is slightly lower

than that for the monolithic material while the contact

radius for the layered structure is slightly larger than that

for the monolithic material.

The maximum contact pressures and the contact radii

normalized to the monolithic case are plotted as a function

of applied indenter load in Figs. 4 and 5 respectively for

spherical indenters with radii of 1.59 and 20 mm. The

two indenter sizes represent the boundaries of the range of

indenter sizes used in our experiments. For the small radius

indenter, the crack initiation load was experimentally

observed to be much smaller than that for the large radius

indenter. Therefore, the range of loads used in the simula-

tions for each indenter radius were chosen to be within the

range of experimentally observed failure loads. In Fig. 4,

the normalized maximum contact pressure is slightly lower

than 1.0 while in Fig. 5 the normalized contact radius is

slightly larger than 1.0. The plots suggest that the greater the

applied load, the more the layered case deviates from

the monolithic case. However, the maximum difference
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Fig. 3 Comparison of contact pressure distribution for monolithic

and layered cases (500 N load applied by 20 mm radius indenter)

5444 J Mater Sci (2006) 41:5441–5454

123



between the two cases is no greater than 10%. Based on

these investigations, it is judged reasonable to approximate

the contact pressure distribution for the layered structure by

that for the monolithic borosilicate material within the

range of parameters used in this study. It is important to note

that this approximation holds for the specific layered

structure we have investigated. If the thickness of top layer

is changed or the material property of the substrate is al-

tered, this approximation may not be valid, and the sub-

sequent analysis based on this approximation may become

invalid. Further work is needed to determine the validity of

the model as a generalized predictive tool.

Stress distribution in the top layer

The thickness of the adhesive layer is much smaller than

that of the borosilicate top layer and the elastic properties

of the adhesive are very close to those of the substrate

(Table 1). For these reasons the effect of the adhesive layer

on the stress field inside the top layer and in particular on

the contact pressure distribution was shown by finite ele-

ment calculations to be negligible for the given set of

material properties. Therefore, in analyzing the stress field

in the vicinity of the contact area on the top surface, the

layered structure is approximated by a two-layer structure

consisting of a borosilicate top layer perfectly bonded to a

composite substrate.

While the finite element method is a powerful tool to

evaluate stress distribution, it requires an extremely fine

mesh for the rapidly changing stress fields associated with

contact problems. However, the applicability to the layered

problem of the approximation by the elliptical contact

pressure distribution (Eq. 1) makes it possible to readily

employ the analytical stress calculation method of Baro-

vich et al. [13] for a perfectly bonded two-layer system

(they obtained the exact solution by the Hankel transfor-

mation method). In this work their method has been coded

and used to evaluate the stress field inside the top layer of

borosilicate glass.

To illustrate the effect of a bonded compliant substrate

on the stress distribution at the contact surface of the glass,

we will again use the case of a 500 N load applied through

a 20 mm radius indenter. Figure 6 illustrates the hoop (rtt)

and radial (rrr) stress components on the top surface of the

glass as a function of distance r from the center of contact

for both the two-layer and monolithic structures. The

contact radius a is shown by the vertical dotted line. There

were significant similarities between the stress distributions

for the two cases. Both stress components are compressive

inside the contact area. Outside the contact area, the radial

stress component is tensile reaching its maximum value at

the edge of the contact area and decreasing monotonically

as the distance from the contact edge increases. However,

due to the lower modulus of the substrate (see Table 1), the

value of the radial tensile stress for the two-layer case is

lower at the contact edge and outside the contact area than

for the monolithic case.

Stress intensity factor along the crack path

For a monolithic semispace, the indenter-induced stress

field decreases rapidly with depth (z-axis). In order to

account for this rapid change in the crack initiation phe-

nomenon, Frank and Lawn [5] have combined the prior

stress field (without a crack) and the Griffith energy bal-

ance criterion for a crack initiating at the contact edge.

Assuming that the crack path is perpendicular to the 1st

principal stress r1 and follows the r3 trajectory, they

evaluated the stress intensity factor. Mouginot and Maugis

[6] further extended the method by Frank and Lawn [5] to

include possible crack initiation at various radii r0 outside
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the contact area. They have also considered the expanding

crack front and obtained the stress intensity factor in the

form:

KI ¼
2
ffiffiffiffiffi

pc
p

Z c

0

rb

rc

r1(b)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� b2=c2
p d(b), ð5Þ

where the integral is calculated along the length of the

proposed crack path b; c is the crack length; rb and rc are

the radii of the crack at lengths b and c; and r1 is the

maximum principal stress in the prior stress field.

In this work we have extended the above concept to

analyze the contact problem for a layered structure.

Employing the assumption of an axisymmetric crack path

along the r3-trajectory for the top layer of a layered

structure, the effect of the rapidly decreasing stress field

r1(b) on the stress intensity factor along the assumed crack

path was evaluated based on Eq. 5. This extension is made

possible through the analytical stress representation [13]

for a two-layer system. As in the contact problem for the

monolithic semispace, the stress intensity factor KI as a

function of crack length c was shown to exhibit a peak

indicating possible crack propagation arrest at a crack

length above this peak due to a decrease of the stress

intensity factor at the crack tip. In contrast to the mono-

lithic case, the crack path for the layered structure is no

longer independent of load and the corresponding strain

energy release rate can no longer be presented as a non-

dimensionalized master curve, as was done in the mono-

lithic case [5]. The analysis for a layered structure, there-

fore, requires a case-by-case trial and error approach and

the details of the analysis are presented by using specific

examples.

In Fig. 7, the r3 trajectory of the assumed crack path for

the two-layer structure is compared with that for the

monolithic case. Both r- and z- coordinates were normal-

ized by the contact radius a. The indenter radius was

chosen to be 20 mm and the crack initiation site was

chosen to be at r0 = 1.15a (15% outside the contact edge).

For the two-layer structure the r3-trajectory depends on the

load level. At a sufficiently small load the contact radius is

smaller than the top layer thickness and the r3-trajectory

approaches that for the monolithic case. However, with

increased load and contact radii, the substrate affects the

stress distribution inside the top layer and the r3 trajectory

is tilted from that of the monolithic case toward the sample

top surface (Fig. 7). The stress component normal to the

r3-trajectory (i.e. the maximum principal stress r1) is

plotted as a function of crack length in Fig. 8 for the two-

layer structure (the graph corresponds to the crack path

shown in Fig. 7 for 500 N indentation load). The magni-

tude of stress rapidly decreases with crack lengths similar

to the monolithic case.

Conditions for crack initiation

Using the crack path as in Fig. 7 and the stress distribution

normal to the crack path, r1, as in Fig. 8, the stress

intensity factors for the two-layer structure have been

calculated from Eq. 5. They are plotted in Fig. 9 for

indenter radius 1.59 mm as a function of crack length for

five different indentation loads with a fixed surface radius

r0 = 1.15a of the initiated cone crack. The critical stress

intensity factor for borosilicate glass is indicated in the

figure by a dashed line. For loads less than 50 N, there will

be no crack initiation at radius r0 = 1.15a regardless of the

size of the crack (crack length c) because the stress

intensity factor along the crack path is always less than the

critical value (the minimum critical load for any crack

initiating at r0 = 1.15a, therefore, is determined to be

0
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Fig. 7 Surface crack path normalized by contact radius a in the

vicinity of contact area under indentation by 20 mm radius indenter
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curve is independent of indentation load
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Fig. 9 Stress intensity factor KI versus crack length c for crack

initiated on the contact surface at r0 = 1.15a for different loads

produced by a 1.59 mm radius indenter
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approximately 50 N). As the indentation load increases, the

stress intensity factor curve shifts upwards and intersects

with the critical stress intensity factor value at two different

points. The intersection of the stress intensity factor curves

with the critical stress intensity value of the glass will

determine the range of crack sizes that have the potential

for propagation. If at least one of the preexisting surface

defects is equal to or larger than the crack size at the left

intersection, it will grow until it reaches such a length that

the stress intensity factor is smaller than the critical stress

value. From Fig. 9 one determines the load required for

crack initiation at r0 = 1.15a.

A multi-site family of curves is shown in Fig. 10 where

the stress intensity factor is plotted as a function of crack

length for different normalized crack initiation radii (r0/a)

for a fixed indenter radius of 1.59 mm and a 70 N inden-

tation load. The critical stress intensity factor is shown by a

horizontal dashed line. This graph clearly illustrates the

influence of the crack initiation radius on the resulting

stress intensity factor curves. For a crack initiation site at

r0 = 1.7a, the stress intensity curve is always lower than

the critical stress intensity value; therefore, regardless of

the crack size, crack propagation will not occur under the

given condition. As the crack initiation site becomes closer

to the contact area, the stress intensity curves shift upwards

and eventually intersect with the critical stress intensity

factor line. Again, the values of crack length at the inter-

section points of the stress intensity factor curve with the

critical stress intensity line provide the range of critical

crack lengths. It is of interest to point out that the stress

intensity curve for a crack initiating right at the edge of the

contact area, i.e. r0 = 1.0a, is always below the critical

stress intensity factor. This implies that under the given

conditions, despite the higher stress concentration on the

top surface right at the contact edge (Fig. 6), no crack will

initiate and propagate from this site regardless of the crack

length. However, for a crack located slightly outside the

contact area, r0 = 1.1a for example, the stress intensity

factor curve does intersect the critical stress intensity factor

line, and crack propagation becomes possible if a crack

with appropriate size preexists at this location.

This parametric study shows that the broadest range of

preexisting surface critical crack lengths, which propagate

at a given indenter load, is at sites slightly outside the

contact edge; while preexisting cracks right at the contact

edge or far from the contact edge will not propagate under

the given conditions. This phenomenon has been observed

by numerous investigators under similar experimental

conditions [7]. Using a series of stress intensity factor

curves, such as those shown in Figs. 9 and 10, and com-

paring them with the critical stress intensity factor, the

minimum critical load for crack initiation can be obtained

for a given indenter radius. In the case of the 1.59 mm

spherical radius indenter, the critical load is determined

from Figs. 9 and 10 to be approximately 50 N.

The above analysis of minimum critical load required to

initiate cracks from the contact surface of a layered

structure is significantly more complicated than for the

monolithic case. In the monolithic case, the strain energy

release rate may be represented in a non-dimensionalized

form which is independent of load and indenter radius. The

envelope of this non-dimensionalized energy release rate as

a function of normalized crack length for different nor-

malized starting radii reaches a plateau over a range of flaw

sizes and this plateau leads to immediate calculation of the

minimum critical load [5, 7]. After appropriate normali-

zation, the stress normal to the crack plane is also inde-

pendent of load and indenter radius, and thus only a set of

master curves for different normalized starting radii is

required. This normalization process cannot be applied to

the layered case since the stress normal to the crack plane

in this case is both load and indenter radius dependent. The

addition of a top layer to the contact problem also intro-

duces a scale size (layer thickness) which eliminates the

possibility of master curve analysis, and therefore a trial-

and-error approach through a series of individual load-

dependent analyses is required.

Statistical consideration and critical load distribution

In order to analyze statistical variations of failure associ-

ated with the contact problem for a monolithic semispace,

Fischer-Cripps [14] combined the Griffith energy balance

criterion for crack propagation by Mouginot and Maugis

[7] with the well-known Weibull [15] distribution of crit-

ical crack sizes. To further employ this concept, Wang

et al. [5] experimentally determined the failure load

distribution and employed a statistical model of Batdorf

et al. [16, 17] to obtain flaw distribution parameters for

indentation tests.

In this work the method was further extended to analyze

crack initiation and failure phenomena for a layered

structure. We also departed from the method of Wang et al.

[5] by more accurately reflecting the multi-axial stress state

Fig. 10 Stress intensity factor KI versus crack length c for crack

initiated on the contact surface at different crack initiation radii r0

under 70 N load produced by a 1.59 mm radius indenter
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on the contact surface of a layered model. In particular, the

statistical parameters determined by biaxial tests were

converted to those for the stress state on the contact sur-

face. According to Batdorf et al. [16, 17], the failure

probability caused by surface cracks under a multiaxial

stress state can be evaluated by

F ¼ 1� exp �
Z

A

Z 1

0

X(r; rc)

2p
dN (rc)

drc
drc dA

2

4

3

5, ð6Þ

where W is the solid angle that embeds the crack normals of

all cracks of a given size which satisfy the fracture criterion

(see Appendix). For a given stress state r we define the

critical stress rc, at which a crack with critical length c*

begins to propagate. N(rc) gives the number of flaws per

unit area for which the critical stress varies between zero

and rc (N(rc) can be interpreted as the crack density

function). We will assume that the crack density function

N(rc) takes the following form [18]:

NðrcÞ ¼ krm
c ð7Þ

where k and m are the crack density parameters. Equation 7

characterizes the surface roughness associated with a spe-

cific surface preparation and the parameters k and m can be

determined from experimental strength data such as biaxial

and uniaxial tensile tests.

By dividing the top surface area into infinitesimal con-

centric rings bounded by radii ri and ri + dr with constant

radial stress rrr, we rewrite the failure probability for this

infinitesimal area as follows.

F i(rrr) ¼ 1� exp �(2pridr)�krm
rr

� �

: ð8Þ

where �k (Appendix) varies with stress state and is given by

�k ¼ mk
2p

Z 1

0

X rttrrr; rcrrrð Þ � rc

rrr

� �m�1

d
rc

rrr

� �

: ð9Þ

Here rtt is the hoop stress and X rttrrr; rcrrrð Þ is deter-

mined from the actual surface stress state (as shown in

Fig. 6) and the fracture-mechanics-based critical stress. In

this work, we will employ the fracture criterion where a

crack propagates only when the stress normal to the crack

plane denoted by rn reaches the critical stress rc as follows:

rn ¼ rc ð10Þ

As shown in Fig. 6, a load applied through a spherical

indenter to the top surface of the layered structure induces a

tensile radial stress rrr and a compressive hoop stress rtt

outside the contact area. As a result of this stress state, a

crack tends to develop in the hoop direction normal to rrr.

If the crack is oriented in the r-direction, it is subjected to a

compressive stress (rtt), and may not propagate. The crit-

ical range of angles X rttrrr;rcrrrð Þ is determined such

that the criterion (10) is met for constant rtt and rrr of the

given infinitesimal ring area. The physical implication of

the new approach represented by Eqs. 8 and 9 is further

discussed in the Appendix.

The stress intensity factor of a crack normal to rrr can be

approximated as

KI ¼ rrr
ffiffiffiffiffi

pc
p

ð11Þ

where c is the length of a crack. Using KI = KIC in the

above equation and Eq. 8, we obtain

F i(c � c � ) ¼ 1� exp �2pridr�k
KIC
ffiffiffiffiffiffiffiffi

pc�
p
� �m� �

ð12Þ

where �k is given by Eq. 9, and c* is a critical crack

length for a given stress state and fracture toughness KIC

Eq. 8 describes the probability of failure as a function of

the surface stress state (rrr, rtt). It does not display any

dependence of stress with length; on the contrary, Eq. 12

is recast in terms of the probability of finding a crack

with equivalent length equal to or larger than c*. Since

the crack density is independent of the nature of the stress

state, Eq. 12 holds for all types of actual stress states. The

critical crack size c* in Eq. 12 will be determined by

taking into consideration the diminishing stress field with

length as discussed in section Stress distribution in the top

layer.

The probability of finding at least one preexisting crack

with equivalent length between c1 and c2 is given by

Fi(c1 � c\c2) ¼ F i(c � c1)� F i(c � c2) ð13Þ

Therefore, Fi is the probability of failure with crack

initiation within the ith annular ring. The failure probability

for crack propagation (initiation) from the total top surface

area is then given by

F ¼ 1�
Y

N

i¼1

1� Fið Þ: ð14Þ

Probability analysis of crack initiation from the bonded

interface

In this section we will predict the probability distribution

of crack initiation and propagation starting from the

bonded interface in the brittle top layer of the model two-

layer structure. Unlike the cone-shaped crack initiation

from the sample contact surface, the crack initiated from
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the interface has been characterized as half-penny shape

and nearly perpendicular to the interface. This difference

in the failure mode is reflected in the analysis. Since the

interfacial region is away from the immediate neighbor-

hood of the contact load on the top surface, the change in

the local stress distribution along the crack depth

(z-direction) is relatively mild at the interface. Because of

this, the stress intensity factor does not vary significantly

along the crack path. The knowledge of a specific flaw

distribution and the corresponding critical stress accom-

panied with the information on the stress distribution at

the interface immediately leads to failure probability

determination through Eqs. 6, 7 and 10. The details of the

stress analysis and the statistical analysis are presented

below. The analysis for a completely debonded interface

is also included in the discussion. The stress analysis

presented in sections Interface Stress distribution for

perfectly bonded layers and Effect of interface debonding

on interfacial stress distribution was performed by the

FEM as described in section Contact pressure distribution

for the semispace versus layered case.

Interface stress distribution for perfectly bonded layers

The hoop (rtt) and radial (rrr) stress distribution at the

interface between the bonded glass layer and composite are

shown as a function of radius r in Fig. 11 for a point and

20 mm radius indenter loads. The stress components were

normalized by P/t2, where P and t are the indenter load and

the thickness of the top glass layer, respectively. The

indentation load of 500 N was chosen as being close to the

experimental crack initiation load for the 20 mm radius

indenter.

For a point load, the normalized stress distribution is

independent of the load. However, due to increases of the

contact area with load for the spherical indenter, the stress

distribution at the interface varies with the indentation load

even after appropriate normalization. When the level of

load is so small that the contact area is much smaller than

the layer thickness, the normalized stress distribution for

the 20 mm radius indenter is almost identical to that of the

point load. As the load is increased to 500 N, however,

there were significant differences for the stress level at the

center between the loading by a point force and a 20 mm

radius indenter. In the case of the 20 mm radius indenter,

the contact load on the top surface is more widely dis-

tributed compared to that of a point load, leading to a

significant reduction in the maximum stress components. It

is important to note that if the actual contact pressure

through a spherical indenter is approximated by a point

contact, it will lead to a more conservative estimate of

failure load. For an indenter of much smaller radius

(1.59 mm), the load required for crack initiation was

experimentally determined to be around 200 N. For this

level of load, the contact surface radius is very small and

the normalized stress distribution at the interface is basi-

cally identical to that of the point load distribution shown

in Fig. 11. Therefore, for our experimental conditions,

Fig. 11 shows the possible maximum differences of stress

distributions at the interface.

Figure 12 shows the stress dependence along the central

loading axis (z-axis) from the contact surface toward the

bonded interface in the top glass layer (at r = 0 hoop stress

rrr and radial stress rtt are equal). An indentation load of

500 N was applied through a 20 mm radius indenter. The

compressive stresses directly below the contact point

transit to tensile stresses near the bonded interface.

We have observed experimentally that cracks initiating

from the interface are generally in planes approximately

perpendicular to the bonded surface (Fig. 1). For this rea-

son the crack length is measured in the z-axis direction

from the interface, and the stress normal to the crack is

represented by the hoop stress. In order to examine the

stress normal to a crack in the vicinity of the interface, a

portion of Fig. 12 is expanded and shown in Fig. 13. It is

important to note that the stress normal to the crack plane

does not change significantly with the crack depth which is

in contrast to the behavior at sample surface (Fig. 8), where

the normal stress is shown to decrease very rapidly with the

crack length.

Fig. 11 Normalized radial (rrr) and hoop (rtt) stresses on the

interface (at bottom surface of the glass) for a three-layer system

(Fig. 1). Solid and dashed lines are for a point load (for this case the

normalized stress distributions are independent of indenter load);

triangle symbols are for the 20 mm radius indenter with 500 N load

Fig. 12 Radial stress rrr distribution along z-axis from surface

toward interface (20 mm radius indenter with 500 N load)
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Effect of interface debonding on interfacial stress

distribution

In section Effect of interface debonding on interfacial

stress distribution, the bonding between the top layer and

the substrate was assumed to be perfect. However, due to

various environmental conditions (both mechanical and

chemical) there is a potential for the bond to deteriorate. In

actual applications, partial debonding is more likely to

occur than total debonding. Even if there was total deb-

onding, there would be friction between the substrate and

the top layer. However, in order to illustrate the potential

effect of bond deterioration on the failure strength of a

layered system, we consider the extreme case of an ideal-

ized total debonding without friction. We have compared,

in Fig. 14, the stress distributions at the interface as a

function of radial distance r from the central loading axis

for the perfectly bonded and completely debonded situa-

tions. The friction between the top layer and the substrate is

assumed to be zero and a point load of 200 N is applied. In

both cases, the maximum stress is observed to occur at the

z-axis (r = 0) where the radial and hoop stress components

are equal. The maximum interfacial stress resulting from

point loading of the debonded top layer is shown to be

significantly higher than for an identically loaded bonded

layer. This suggests that the critical load for a layered

structure is greatly influenced by the bond quality at the

interface and bonding deterioration is likely to lead to

failure at lower levels of load.

Probability analysis of interface crack initiation

To predict the failure probability of a layered structure for

both perfectly bonded and completely debonded top layers

we will account for the actual stress distribution at the

interface and apply Eq. 6 to calculate the statistical failure

probability. The flaw density function is again assumed to

be in the form (7) with the parameters k and m to be

determined experimentally from the biaxial strength tests.

Following the same methodology as in section Condi-

tions for crack initiation, we divide the overall interfacial

surface into N infinitesimal concentric ring areas and apply

Eqs. 7 and 6 to the ith infinitesimal ring area. As shown in

Fig. 11, the hoop stress rtt is always larger than the radial

stress rrr at the interface which explains why radial shaped

cracks are those experimentally observed to initiate at the

interface. Therefore, in contrast to Eqs. 8, 9 for the surface

crack, the failure probability is expressed in terms of rtt

instead of rrr (rtt is normal to the crack plane) and for the

infinitesimal ring area is calculated as:

Fi(rtt) ¼ 1� exp �(2pridr)�krm
tt

� �

, ð15Þ

where

�k ¼ mk
2p

Z 1

0

X rrrrtt; rcrttð Þ � rc

rtt

� �m�1

d
rc

rtt

� �

: ð16Þ

The overall probability of failure initiation from the

interface is obtained by combining the failure initiation

probabilities from all infinitesimal ring areas; this is

accomplished by inserting Eq. 15 into Eq. 14.

Comparison of theoretical predictions

with experiment

In the data analysis, the parameters describing the surface

flaw density functions were determined experimentally by

biaxial tests. From these results, the failure probabilities of

crack initiation from both the contact and interface surfaces

of the glass were predicted for the two spherical indenter

sizes. The theoretical predictions were compared against

experimental indentation results. In addition, the effect of

complete interfacial debonding on the failure probability

was predicted theoretically and compared against experi-

mental data.

Determination of flaw distribution parameters

The parameters of the surface flaw density functions were

determined by curve fitting of the biaxial test data for both

sanded and etched surface conditions. To evaluate the
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Fig. 13 Stress normal to crack plane as a function of crack depth c

for a crack at the center of and perpendicular to the interface (20 mm

radius indenter with 500 N load)

Fig. 14 Comparison of radial (rrr) and hoop (rtt) stresses on the

bottom surface of the top layer for bonded and debonded cases

(200 N point load is applied)
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cumulative probability of fracture for the biaxial tests we

will use Eq. 6 by assuming that the crack density function

N(rc) is given by Eq. 7. For the biaxial test data, the

cumulative failure probability F is rewritten as

F ¼ 1� exp �kmR2
d ID

P
pt2

� �m� �

, ð17Þ

where ID is given by

ID ¼
Z 1

0

d
r

Rd

� �

Z 1

0

X
r

Rd

� �

rc

P=pt2

� �m�1

d
rc

P=pt2

� �

,

ð18Þ

where Rd is the plate radius and t is thickness, W (See

Appendix) represents the range of critical flaw orientation

angles which have been determined from the biaxial stress

state and fracture criterion (10). A crack propagates only if

its orientation falls within the range of W and the normal

stress is larger than or equal to the critical stress rc

according to fracture criterion (10).

The distribution parameters k and m were determined by

curve fitting of the experimental data with Eq. 17. Taking

advantage of the linearity between ln(–ln(1 – F)) and ln(P)

a linear regression is employed. Figure 15 presents the

experimental data and the best fit obtained by the least

squares method. The values of m and k for both sanded and

etched surface conditions were determined and the results

are summarized in Table 2.

Analysis of indentation tests

The probability of crack initiation versus failure load

obtained from the experimental indentation test using a

1.59 mm radius spherical indenter is represented in Fig. 16

by the open squares. Under these conditions, all failures

were initiated from the contact surface. In addition, 90%

confidence intervals (dotted lines) are shown based on the

5% and 95% ranks of the experimental data [10]. Using

the method described in section Theoretical analysis, the

probabilities of crack initiation from both the top surface

(dashed line) and the interface (solid line) were calculated

and are also shown in Fig. 16. The predicted probability of

failure from the contact surface is in good agreement with

the experimental data. The calculated probability of failure

from the interface of the etched glass surface is much

smaller than that from the contact surface at a given load.

The differences in the two calculated probability curves

explain the absence of interface-initiated failures in the

experimental data.

Similarly, indentation test results obtained with the

20 mm radius spherical indenter on the layered specimens

are shown in Fig. 17. For this large radius indenter, cracks

were observed to initiate only from the interface. The

model predicts that the failure probability initiating from

the contact surface is nearly zero (represented by circles),

and the high probability of failure initiation from the

interface (solid line) dominates the failure mode at loads

greater than about 250 N. The model’s prediction of the

failure probability from the interface is in good agreement

with the experimental data and provides a theoretical basis

for the observed differences in failure initiation modes.

The theoretical failure probability distribution curves

for the contact surface and those for the interface for a

range of indenter radii are presented in Fig. 18. These

curves clearly explain why the failure initiation site

transits from the contact surface to the interface with

increase of indenter diameter. The failure probability of

cracks initiating from the contact surface is greatly

influenced by the radius of the indenter: the smaller the

radius, the lower the critical load. The failure probability

of cracks initiating from the interface, however, is mini-

mally affected by the radius of the indenter ranging from
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Fig. 15 Linear regression of transformed biaxial failure load data for

sanded and etched surfaces

Table 2 Flaw distribution parameters

m K

Sanded surface 4.917 2.361 · 10–11 mm–2 MPa–4.917

Etched surface 4.852 1.873 · 10–11 mm–2ÆMPa–4.852
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Fig. 16 Probability of crack initiation versus indentation load. Data

for a 1.59 mm spherical radius indenter on a bonded layered sample.

Simulated contact surface probability curve is indicated by label ‘‘C’’

(broken line) and that for interface by ‘‘I’’ (solid line). Experimental

results are shown by squares. All cracks were observed to be initiated

from the contact surface
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0 mm radius (a point load) to 20 mm radius as shown in

the shaded region ‘‘I’’ in Fig. 18. This phenomenon is

attributed to the small changes in the interfacial stresses

generated by indenters of various radii (Fig. 11). It can be

observed from the series of probability curves shown in

Fig. 18 that for small indenter radii the probability of

failure is dominated by cracks initiating from the contact

surface while for the larger indenter radii, the half-penny

shaped interface-crack initiated failure mode dominates.

There exists a range of indenter ball sizes (around 5 mm

in radius) where both probabilities overlap and failure

may initiate from either the contact or the interfacial

surface.

Effect of interface debonding

The experimental and theoretical failure probability dis-

tributions obtained with a 20 mm radius indenter for

completely bonded and completely debonded specimens

are shown in Fig. 19. For both cases, all failures have

occurred from the interface. One can see that the critical

loads for the completely bonded case were much higher

than those for the fully debonded case. This can be

attributed to the higher stress levels that exist on the bottom

surface of the fully debonded coating as previously shown

in Fig. 14. For the fully debonded case, the theoretical

prediction matches the experimental data very well, and it

lies within the 90% confidence interval of the experimental

data for most of the load range. The theoretical prediction

for the completely bonded case, however, results in slightly

lower critical loads than the experimental data. Thin films

of adhesive, such as those used in our experiments, have

been shown to increase the strength of ceramics materials

[19]. The increase in strength has been attributed to a crack

bridging or healing effect of the surface flaws or a residual

surface compressive force caused by the polymerization

shrinkage forces in the resin [20]. In either case, our

theoretical model did not factor in this effect and the resin

strengthening phenomena observed by other investigators

may provide some explanation as to why there is a dis-

crepancy between the experimental and theoretical data

obtained on the completely bonded specimens.
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Summary and conclusions

The failure of a brittle coating on a compliant substrate

(borosilicate glass/cement/composite) subjected to a static

load through a spherical indenter was investigated experi-

mentally and theoretically. Two types of failures, a

Hertzian cone crack initiating from the contacting surface

and a half-penny shaped crack initiating from the interface,

were investigated. The statistical failure model for multi-

axial stress states developed by Batdorf et al. [16, 17] was

employed to characterize the statistical distribution of

varying flaw size. These statistical parameters were

experimentally determined by biaxial strength tests. With

the experimentally measured elastic moduli, these statisti-

cal parameters were used in theoretical analysis for pre-

dicting failure probability distributions.

In predicting failure probability distributions of cracks

initiating from the contact surface, the effect of a rapidly

changing stress field associated with an indentation load on

the cone crack propagation for a layered system was

accounted for analytically. The probability of a cone crack

initiation was predicted as a function of indentation load by

combining the experimentally obtained statistical distri-

bution of flaws with a fracture-mechanics-based failure

criterion. For the contact-surface-initiated cracks in the

layered system our analysis is a generalization of the

method proposed for a monolithic semispace by Fischer-

Cripps [14] and explored by Wang et al. [5]. The statistical

model of the failure initiation is further improved by

incorporating the multi-axial stress state of the contact

surface. In addition, failure probability curves as a function

of indentation load were obtained for a half-penny-shaped

crack initiation at the interface.

By comparing these two theoretical failure probability

distributions, both the crack initiation site (contact surface

versus interface) and the failure probability distribution

were predicted theoretically. Experimental indentation tests

on layered specimens demonstrated that for a small

spherical indenter (1.59 mm radius), the failure initiates

from the contact surface and the predicted failure proba-

bility curve falls within the 90% confidence interval of the

experimentally obtained failure probability data for most of

the region. For a large spherical indenter (20 mm radius)

the failure initiates from the interface as demonstrated by

both experimental observations and theoretical predictions.

The transition of the mode of failure from surface to

interfacial occurs somewhere around a spherical contact

radius of 5 mm.

Similar experimental and theoretical investigations were

repeated for the complete debonded layered system using

the 20 mm radius indenter. In this case all failures were

initiated from the interface. Both the experimental and

predicted data demonstrated a shift of the failure proba-

bility curve towards much lower loads for the fully deb-

onded specimens compared to the completely bonded

specimens. The theoretical prediction of the failure prob-

ability curve for the debonded specimens fell within the

90% confidence interval of experimental data for most of

the region. However, the model predicts somewhat higher

failure probabilities than that experimentally obtained for

the completely bonded case. This may be attributed to the

possible strengthening effect of adhesive on ceramic that is

not accounted for in our model.

In many practical applications, loading directions are

not necessarily normal to the layer direction. Failure

mechanism due to loading parallel to the layered system

will need to be investigated in the future in order to address

failure probability under general loading conditions.
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Appendix

Discussion of statistical parameters for indentation

contact problem

In an infinitesimal concentric ring bounded by radii ri and

ri + dr with constant radial stress rrr, the failure proba-

bility is given [5, 14] as follows:

F i(rrr) ¼ 1� exp �(2pridr)krm
rr

� �

ð19Þ

It is implicitly assumed in Eq. 19 that only the maximum

principal stress component (must be tensile) affects the

failure probability. The influence of the other principal

stress components on the failure probability is neglected.

For example, in Fig. 20, a crack is oriented in the direction

of the principal stress components r1 (r1 ‡ r2). In the case

A, the r2 is compressive and in the case B is tensile. Since

Eq. 19 does not account for the differences in stress states

between A and B (no dependence on r2), the predicted

failure distributions of the two cases are identical. Obvi-

ously this is not the case. The crack in case A cannot

propagate due to compressive stress applied normal to the

crack surface, while the crack in case B may propagate if

the magnitude of the applied tensile stress r2 satisfies the

fracture criterion.

In order to overcome this limitation and more accurately

reflect the multi-axial stress states, we will use the method

proposed by Batdorf et al. [16, 17] (Eq. 6). Equation 6

accounts for the stress components other than the first

principal stress in calculation of the failure probability

through the solid angle W. Within the framework of

the probability model (Eq. 6), the probability of crack
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propagation is proportional to W/2p and is measured by the

probability of its normal n falling within the solid angle W.

For example in Fig. 21, the failure will occur when the

crack normal n is within the sector W, and the failure will

not occur when n is outside of this sector. Therefore, the

influence of r2 on crack propagation probability is ac-

counted for by calculation [16, 17] of the solid angle W for

a given stress state (the resulting W will depend on stress

state, crack size and failure criterion selected). In particu-

lar, if a crack in case Fig. 20B satisfies the failure criterion

(r2 = rc), then W is equal to 2p and it will propagate, and

for the same crack in Fig. 20A, W is less than 2p and it will

not propagate.

To account for the multi-axial stress state, we have

derived from Eq. 6 the modified distribution in the form:

F i(rrr) ¼ 1� exp �(2pridr)�krm
rr

� �

, ð20Þ

where �k depends on stress state and is given by

�k ¼ mk
2p

Z 1

0

X rttrrr,rcrrrð Þ � rc

rrr

� �m�1

d
rc

rrr

� �

: ð21Þ

Here rtt is the hoop stress and X rttrrr,rcrrrð Þ is

determined from the actual surface stress state.

Equation 20 will reduce to Eq. 19 for a uniaxial tensile

stress state.
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Fig. 20 Illustration of the two different stress states for a crack. In

case A crack is under compression and does not propagate, in case B

it propagates while Eq. 19 predicts identical results for both cases
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Fig. 21 Crack under biaxial stress state. Crack propagates when its

normal n is in the solid angle W
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